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Abstract
The spin-glass phase in the LiHox Y1−x F4 compound is considered. At zero
transverse field this system is well described by the classical Ising model.
At finite transverse field deviations from the transverse field quantum Ising
model are significant, and one must take properly into account the hyperfine
interactions, the off-diagonal terms in the dipolar interactions, and details of
the full J = 8 spin Hamiltonian to obtain the correct physical picture. In
particular, the system is not a spin glass at finite transverse fields and does not
show quantum criticality.

1. Introduction

The study of spin glasses, and in particular the classical transition between the spin-glass (SG)
phase and the paramagnetic (PM) phase, have been thoroughly studied since the 1970s [1]. As
interest in quantum phase transitions has grown, the understanding of quantum criticality at
the SG to PM phase transition has drawn much theoretical interest [2–4]. Experimentally, the
quantum phase transition is not accessible in most spin glasses, where the strong exchange
interaction blocks quantum fluctuations at available magnetic fields. However, anisotropic
magnetic dipolar systems, notably the LiHox Y1−xF4 compound, have very weak exchange
interactions, and seem ideal for the observation of such a transition [5]. In this system the
dipolar interaction and single-ion anisotropy terms have magnitude ∼1 and ∼10 K respectively;
with spin J = 8, appreciable quantum fluctuations are expected already at transverse fields
H⊥ ∼ 1 T. The strong easy-axis anisotropy means that, for T � 10 K, the Ho spins truncate
to an Ising-like doublet; this anisotropy also strongly suppresses all but the longitudinal terms
of the dipolar interaction. The LiHoF4 compound can be diluted by exchanging Ho with the
nonmagnetic Y atom, resulting in the LiHoxY1−x F4 compound with any desired x [5]. The
angular dependence of the dipolar interaction, in the presence of quenched randomness, results
in frustration. Thus, the system which is ferromagnetic at x = 1 [6], turns into a spin glass for
x = 0.167, with Tc = 0.13 K [7, 8]. For the latter dilution, the SG to PM transition was studied
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as a function of T and H⊥ [7, 8]. Both the linear and nonlinear susceptibility were measured.
Despite the importance of this experiment, some of its very interesting features long remained
without a proper explanation. Questions included

(i) the reduction of the cusp in the nonlinear susceptibility with decreasing T ;
(ii) the observation that it is much easier to disorder the spin glass thermally than quantum

mechanically;
(iii) the sharpness of the low-T crossover between a PM response and slow relaxation; and
(iv) the smallness of the low-T critical exponent, as observed in the nonlinear susceptibility

near the transition.

Theoretically, the LiHox Y1−xF4 system was considered to be a good realization of the
transverse field Ising model (TFIM) in the electronic degrees of freedom. Recently [9–11] it
was shown that the real system differs from the above model in two significant ways, which
affect the physics considerably; (a) the hyperfine (hf) interaction between the Ho electronic and
nuclear spins is strong, and for x � 1 in general, and in the SG experiments [8] in particular,
dominate the physics [9, 11], (b) the off-diagonal dipolar terms, although effectively reduced,
become essential at any finite H⊥ as they reduce the symmetry of the model [10]. In this paper
we show how these features answer the first two of the four questions noted above; we also
show that a proper understanding of the off-diagonal dipolar terms requires going outside the
simple TFIM.

2. Hyperfine interactions

The Hamiltonian describing the LiHox Y1−xF4 system is given by a sum of crystal field [12, 13],
Zeeman, hf, and inter-Ho interaction terms:

H = Hcf + HZ + Hhf + Hint. (1)

The Ho ion has a J = 8 angular momentum. Hcf splits the 17-fold degeneracy, leaving three
relevant low-energy levels: an Ising-like doublet, denoted |↑〉, |↓〉, and a first excited state
approximately 10 K higher in energy, denoted |�l

2〉 [9, 12]. HZ = − ∑
i gJμB �H · �Ji is the

Zeeman energy, and Hint = − ∑
i j Uαβ

i j J αi J βj is dominated by the dipolar interaction [13]. We
denote the easy axes by z, and consider H⊥ ‖ x . It is common to neglect all but the longitudinal
terms in the dipolar interaction, and drop the hf interaction, thus obtaining a low-energy TFIM
effective Hamiltonian:

H = −
∑

i, j

V zz
i j τ

z
i τ

z
j −�0(H⊥)

∑

i

τ x
i , (2)

where �τ j is a Pauli vector describing the two-level effective electronic spin at spatial position
r = r j , and �0 ∝ H⊥2/�0 for small H⊥. However, both the hf and off-diagonal dipolar
interactions are of crucial importance for the LiHox Y1−x F4 system.

The Ho atom is a pure isotope I = 7/2 nuclear spin with contact hf interaction Hhf =
AJ

∑
i
�Ii · �Ji . Due to the strong anisotropy we consider first the longitudinal part of the

hf interaction H ‖
hf = AJ I z J z . This term splits each of the states |↑〉, |↓〉 into an eightfold

multiplet of nearly equidistant levels, with separation ∼205 mK [12] between adjacent levels
(figure 1). This splitting, larger than the typical dipolar energy and the relevant experimental
temperatures [8], influences significantly the physics of the system. The Ising doublet states
have now a definite nuclear spin, i.e. Iz = −7/2 for the electronic state |↑〉 and Iz = 7/2 for
the electronic state |↓〉. A transverse field H⊥ then couples a ≡ |↑,−7/2〉 with b ≡ |↓,−7/2〉
and ā ≡ |↓, 7/2〉 with b̄ ≡ | ↑, 7/2〉 (see figure 1). Thus, the transverse field by itself does not
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Figure 1. Splitting of the electronic low-energy doublet (↑ and ↓) due to the longitudinal hf
interaction. The doublet ground states, a and ā have a definite and opposite nuclear spin, ±7/2.
Transverse magnetic field couples states with the same nuclear spin, as is shown by the dashed
lines.

induce quantum fluctuations between the relevant Ising doublet ground states (GSs), but only
re-normalizes their effective spin. The transverse hf interactions H ⊥

hf = AJ (I + J − + I − J +)/2
allow simultaneous changes in Iz and Jz, and thence quantum fluctuations between the Ising
doublet states. However, as is detailed in [9, 11], this mechanism is negligible for H⊥ �
�0/μB. Thus, the inclusion of the hf interactions results in three energy scales which dictate
the behaviour of the system, and in particular the position of the crossover between the SG and
PM phases as a function of T and H⊥ [9, 11]. At zero field, Tc(0) is dictated by the dipolar
interaction V0, since the nature of the Ising doublet is not important for the classical transition.
The behaviour of Tc(H⊥) with H⊥ is governed by the strength of the hf interaction and the
crossover at T = 0 is governed by the anisotropy energy �0, as quantum fluctuations between
the relevant Ising states become significant only when the state |�l

2〉 becomes appreciably
hybridized with |↑〉, |↓〉. All three energy scales become apparent in the position of the line
separating the SG and PM phases, and in particular the relation V0 � �0 explains the fact that
it is much easier to disorder the spin glass thermally rather than quantum mechanically [9, 11].

3. Off-diagonal terms of the dipolar interaction

The longitudinal term of the dipolar interactions, ∝J z
i J z

j , has direct matrix elements within
the low-energy Ising states |↑,−7/2〉, |↓, 7/2〉. All other interaction terms involve the state
|�l

2〉 in second or higher perturbation expansion. Since �0 � V0, one is tempted to neglect all
but the longitudinal interaction. However, the off-diagonal terms, and in particular the terms
∝J z

i J x
j , become important at H⊥ = 0, as they change the symmetry of the system. The

Jz → −Jz symmetry, while maintained by H⊥ without the off-diagonal terms, is destroyed.
This reduction of symmetry results in a generation of an effective random field at each site [10].
As a result, within the droplet picture of Fisher and Huse [14], and using an Imry–Ma-like
argument [15], one obtains [10] a magnetic field-dependent finite correlation length. The
system with transverse magnetic field and off-diagonal dipolar interactions becomes equivalent
to the random field Ising model, i.e., a spin glass in the presence of random longitudinal
magnetic field. Thus, the scaling theory of Fisher and Huse [14] predicts an instability of the
SG phase to finite H⊥ in our case, equivalent to its prediction of the absence of a de-Almeida–
Thouless line in the RFIM. Interestingly, to obtain the correct physical picture of the system
at finite field one has to consider the large Ho spin, going beyond the simplified Ising picture.
The reason is that it is the fluctuations between each of the single Ho GSs and its first excited
states, and not the much smaller quantum fluctuations between the two Ising states a, ā [10],
that govern the magnitude of the effective random field and the reduction of the correlation
length.

Within the scaling picture of Fisher and Huse [14] the spin glass at zero transverse field
has two time-reversed GSs, denoted ψ and ψ̄ . Each Ho ion in the GS ψ is in either state a or ā,
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and in the opposite state in the GS ψ̄ . Consider a single Ho ion at H⊥ = 0. For small magnetic
fields the fluctuations between the Ising states a and ā are negligible [9]. Yet, the energy of
each of the Ising states is reduced by an energy proportional to H⊥2/�0, due to fluctuations
to the relevant excited states (|�l

2,−7/2〉 for a and |�l
2, 7/2〉 for ā). If we choose an arbitrary

region in state ψ , the energy reduction due to the field is just the sum over all spins of the single
spin energy gain. With Jz → −Jz symmetry, the same energy reduction occurs for the state ψ̄ .
Now consider the effect of the off-diagonal dipolar terms (in particular, the term V zx

i j J z
i J x

j ) on
the different domains. In second-order perturbation, the domain energy shift is given by [10]

E (2)
ψ = −〈ψ0|(∑i = j V zx

i j J z
i J x

j + μB H⊥
∑

i J x
i )

2|ψ0〉
�0

. (3)

The dipolar terms have randomly the same or the opposite sign to that of the magnetic field,
and typically, by flipping a domain of N spins one gains an energy of [10]

〈δE〉 = c
j 2μB H⊥V0

√
N

�0
, (4)

where j = max Jz. Comparing this energy gain to the energy cost of flipping the domain [10],
≈ j 2V0Lθd , where L is the domain linear size, one finds a finite correlation length at any H⊥
given by [10]

ξ ≈
(

�0

μB H⊥

) 1
(3/2)−θd

. (5)

Importantly, this correlation length depends only on H⊥ and �0. In the experiment [8], as T
is decreased the crossover to the PM phase occurs at higher H⊥, dictating a smaller correlation
length and a reduced cusp in the nonlinear susceptibility [10]. Note that the cusp is further
reduced due to the renormalization of the effective spin [9]. Interestingly, the finite correlation
length results in an enhanced transverse field in the x direction [10], which was anticipated by
the comparison of the experimental and theoretical positions of the crossover line between the
SG and PM phases [9]. Importantly, our results here are easily generalized to any anisotropic
spin glass, as long as a dipolar interaction exists [10].

In principle, one could also get a finite correlation length in a spin-half Ising model,
by introducing a longitudinal interaction ∝V0 and a reduced off-diagonal interaction
∝αV0 [16]. Similar considerations to the ones above lead to a correlation length ξ ≈
[V0/(αμB H⊥)]1/(3/2−θd) [16], coming from quantum fluctuations between the Ising doublet
states, with a ξ depending on V0. A notable difference between this result and the correct one
is the size ξ at the crossover to the PM phase at T = 0. This crossover actually occurs at
H⊥ ≈ �0 for the case of large spin [9, 10], leading to ξ ≈ 1. However, in the effective spin-
half model the crossover occurs at H⊥ ≈ V0 and ξ ≈ 1/α at the crossover, emphasizing the
inadequacy of the spin- 1

2 model. Recently, Tabei et al considered the anisotropic dipolar spin
glass in transverse field [17]. They used a spin-half model with effective random fields in both
longitudinal and transverse directions, and infinite range interaction. They find a diminishing
of the cusp of the nonlinear susceptibility with reduction of temperature and increase of applied
transverse field. However, neither the experimental temperature dependence of the cusp’s peak
nor its smearing as the temperature is reduced, are reproduced in their results.

4. Numerical results

The scaling relation (4) has been checked against Lanczos exact diagonalization (ED)
computations on finite size clusters [10]. In order to get closer to the experiment, we randomly
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Figure 2. Distributions of the finite size gaps δE rescaled by
√

N and plotted in a semi-log scale.
Lanczos ED data collected over 10 000 random diluted LiHox Y1−x F4 samples for each size N .
Insets: Linear dependence of the disorder average gap 〈δE〉 versus

√
N . (a) Results obtained for

the spin-1 Hamiltonian (6) with �0/μB Ht = 100 for three different sizes, with x = 18.75%.
(b) Results obtained for the spin- 1

2 model (7) with α = 0.1, μB Ht = 0.0025 and five different sizes
with a dilution x = 1/12.

(This figure is in colour only in the electronic version)

distribute N moments at the rare earth sites of three-dimensional LiHox Y1−xF4 diluted lattices,
and focus on s = 1 particles with an on-site anisotropy �0 � 10 K which accounts for the
crystal field. Therefore, the following transverse field dipolar spin-1 Hamiltonian,

H1 = −
∑

i = j

[
1
2 V zz

i j Sz
i Sz

j + V zx
i j Sz

i Sx
j

]
− μB Ht

∑

i

Sx
i −�0

∑

i

([Sz
i ]2 − s2

)
, (6)

has been diagonalized on LiHox Y1−xF4 lattices with x = 18.75% for various sizes, and
over 10 000 independent random samples for each size. In the perturbative regime, we have
computed the finite size gap δE for each sample and the

√
N scaling stated in equation (4) is

clearly demonstrated, as shown in figure 2(a).
A similar calculation was done for the spin- 1

2 Ising model [16]:

H 1
2

= −
∑

i = j

[
1
2 V zz

i j Sz
i Sz

j + αV xz
i j Sx

i Sz
j

]
− μB Ht

∑

i

Sx
i . (7)

Numerically speaking, the s = 1/2 problem is easier since it leads to a smaller Hilbert space
dimension and allows us to check the

√
N scaling relation over a broader range of sample sizes,

as shown in figure 2(b). However, here too the essential difference between the spin- 1
2 and spin-

1 models is apparent. In the spin- 1
2 model, since the significant fluctuations are between the

Ising doublet states, the strength of the dipolar interaction replaces �0 in the denominator of
equation (3), which results in better convergence of the numerics at the smallest sizes.

5. Conclusion

Of the four experimental puzzles mentioned in the introduction, the first two are explained by
our analysis. Since we believe that the Hamiltonian (1) includes all the physics relevant to
the experiment [8], we expect that the solution to the latter two puzzles lies within the same
framework of considerations above.

5



J. Phys.: Condens. Matter 19 (2007) 145218 M Schechter et al

References

[1] Binder K and Young A P 1986 Rev. Mod. Phys. 58 801
[2] Miller J and Huse D A 1993 Phys. Rev. Lett. 70 3147

Guo M, Bhatt R N and Huse D A 1994 Phys. Rev. Lett. 72 4137
Rieger H and Young A P 1994 Phys. Rev. Lett. 72 4141
Thill M J and Huse D A 1995 Physica A 214 321
Guo M, Bhatt R N and Huse D A 1996 Phys. Rev. B 54 3336

[3] Young P (ed) 1997 Spin Glasses and Random Fields (Singapore: World Scientific)
[4] Sachdev S 1999 Quantum Phase Transitions (Cambridge: Cambridge University Press)
[5] Rosenbaum T F 1996 J. Phys.: Condens. Matter 8 9759
[6] Bitko D, Rosenbaum T F and Aeppli G 1996 Phys. Rev. Lett. 77 940
[7] Wu W, Ellman B, Rosenbaum T F, Aeppli G and Reich D H 1991 Phys. Rev. Lett. 67 2076
[8] Wu W, Bitko D, Rosenbaum T F and Aeppli G 1993 Phys. Rev. Lett. 71 1919
[9] Schechter M and Stamp P C E 2005 Phys. Rev. Lett. 95 267208

[10] Schechter M and Laflorencie N 2006 Phys. Rev. Lett. 97 137204
[11] Schechter M and Stamp P C E 2006 in preparation
[12] Giraud R, Wernsdorfer W, Tkachuk A M, Mailly D and Barbara B 2001 Phys. Rev. Lett. 87 057203
[13] Chakraborty P B, Henelius P, Kjonsberg H, Sandvik A W and Girvin S M 2004 Phys. Rev. B 70 144411
[14] Fisher D S and Huse D A 1986 Phys. Rev. Lett. 56 1601

Fisher D S and Huse D A 1988 Phys. Rev. B 38 386
[15] Imry Y and Ma S K 1975 Phys. Rev. Lett. 35 1399
[16] Schechter M and Laflorencie N 2006 in preparation
[17] Tabei S M A, Gingras M J P, Kao Y J, Stasiak P and Fortin J Y 2006 Phys. Rev. Lett. 97 237203 (Preprint

cond-mat/0608145)

6

http://dx.doi.org/10.1103/RevModPhys.58.801
http://dx.doi.org/10.1103/PhysRevLett.70.3147
http://dx.doi.org/10.1103/PhysRevLett.72.4137
http://dx.doi.org/10.1103/PhysRevLett.72.4141
http://dx.doi.org/10.1016/0378-4371(94)00247-Q
http://dx.doi.org/10.1103/PhysRevB.54.3336
http://dx.doi.org/10.1088/0953-8984/8/48/007
http://dx.doi.org/10.1103/PhysRevLett.77.940
http://dx.doi.org/10.1103/PhysRevLett.67.2076
http://dx.doi.org/10.1103/PhysRevLett.71.1919
http://dx.doi.org/10.1103/PhysRevLett.95.267208
http://dx.doi.org/10.1103/PhysRevLett.97.137204
http://dx.doi.org/10.1103/PhysRevLett.87.057203
http://dx.doi.org/10.1103/PhysRevB.70.144411
http://dx.doi.org/10.1103/PhysRevLett.56.1601
http://dx.doi.org/10.1103/PhysRevB.38.386
http://dx.doi.org/10.1103/PhysRevLett.35.1399
http://dx.doi.org/10.1103/PhysRevLett.97.237203
http://arxiv.org/abs/cond-mat/0608145

	1. Introduction
	2. Hyperfine interactions
	3. Off-diagonal terms of the dipolar interaction
	4. Numerical results
	5. Conclusion
	References

